Chapter 550

Distribution (Weibull) Fitting

Introduction

This procedure estimates the parameters of the exponential, extreme value, logistic, log-logistic, lognormal, normal, and Weibull probability distributions by maximum likelihood. It can fit complete, right censored, left censored, interval censored (readout), and grouped data values. It also computes the nonparametric Kaplan-Meier and Nelson-Aalen estimates of survival and associated hazard rates. It outputs various statistics and graphs that are useful in reliability and survival analysis. When the choice of the probability distribution is in doubt, the procedure helps select an appropriate probability distribution from those available.

Features of this procedure include:

1. Probability plotting, hazard plotting, and reliability plotting for the common life distributions. The data may be any combination of complete, right censored, left censored, and interval censored data.
2. Maximum likelihood and probability plot estimates of distribution parameters, percentiles, reliability (survival) functions, hazard rates, and hazard functions.
3. Confidence intervals for distribution parameters and percentiles.

Overview of Survival and Reliability Analysis

This procedure may be used to conduct either survival analysis or reliability analysis. When a study concerns a biological event associated with the study of animals (including humans), it is usually called survival analysis. When a study concerns machines in an industrial setting, it is usually called reliability analysis. Survival analysis emphasizes a nonparametric estimation approach (Kaplan-Meier estimation), while reliability analysis emphasizes a parametric approach (Weibull or lognormal estimation). In the rest of this chapter, when we refer to survival analysis, you can freely substitute ‘reliability’ for ‘survival.’ The two terms refer to the same type of analysis.

We will give a brief introduction to the subject in this section. For a complete account of survival analysis, we suggest the book by Klein and Moeschberger (1997).

Survival analysis is the study of the distribution of life times. That is, it is the study of the elapsed time between an initiating event (birth, start of treatment, diagnosis, or start of operation) and a terminal event (death, relapse, cure, or machine failure). The data values are a mixture of complete (terminal event occurred) and censored (terminal event has not occurred) observations. From the data values, the survival analyst makes statements about the survival distribution of the failure times. This distribution allows questions about such quantities as survivability, expected life time, and mean time to failure to be answered.

Let T be the elapsed time until the occurrence of a specified event. The event may be death, occurrence of a disease, disappearance of a disease, appearance of a tumor, etc. The probability distribution of T may be specified...
Distribution (Weibull) Fitting

using one of the following basic functions. Once one of these functions has been specified, the others may be derived using the mathematical relationships presented.

1. Probability density function, \(f(t) \). This is the probability that an event occurs at time \(t \).

2. Cumulative distribution function, \(F(t) \). This is the probability that an individual survives until time \(t \).

\[F(t) = \int_0^t f(x) \, dx \]

3. Survival function, \(S(t) \) or Reliability function, \(R(t) \). This is the probability that an individual survives beyond time \(t \). This is usually the first quantity that is studied. It may be estimated using the nonparametric Kaplan-Meier curve or one of the parametric distribution functions.

\[R(t) = S(t) = \int_t^\infty f(x) \, dx = 1 - F(t) \]

\[S(t) = \exp \left[-\int_0^t h(x) \, dx \right] = \exp \left[-H(t) \right] \]

4. Hazard rate, \(h(t) \). This is the probability that an individual at time \(t \) experiences the event in the next instant. It is a fundamental quantity in survival analysis. It is also known as the conditional failure rate in reliability, the force of mortality in demography, the intensity function in stochastic processes, the age-specific failure rate in epidemiology, and the inverse of Mill’s ratio in economics. The empirical hazard rate may be used to identify the appropriate probability distribution of a particular mechanism, since each distribution has a different hazard rate function. Some distributions have a hazard rate that decreases with time, others have a hazard rate that increases with time, some are constant, and some exhibit all three behaviors at different points in time.

\[h(t) = \frac{f(t)}{S(t)} \]

5. Cumulative hazard function, \(H(t) \). This is integral of \(h(t) \) from 0 to \(t \).

\[H(t) = \int_0^t h(x) \, dx = -\ln[S(t)] \]

Nonparametric Estimators of Survival

There are two competing nonparametric estimators of the survival distribution, \(S(t) \), available in this procedure. The first is the common Kaplan-Meier Product limit estimator. The second is the Nelson-Aalen estimator of the cumulative hazard function, \(H(t) \).

Kaplan-Meier Product-Limit Estimator

The most common nonparametric estimator of the survival function is called the Kaplan-Meier product limit estimator. This estimator is defined as follows in the range of time values for which there are data.

\[
\hat{S}(t) = \left\{ \begin{array}{ll}
1 & \text{if } t < t_i \\
\prod_{t_i \leq t} \left[1 - \frac{d_i}{Y_i} \right] & \text{if } t_i \leq t
\end{array} \right.
\]
In the above equation, \(d_i \) represents the number of deaths at time \(t_i \) and \(Y_i \) represents the number of individuals who are at risk at time \(t_i \).

The variance of \(S(t) \) is estimated by Greenwood’s formula

\[
\hat{V} \left[\hat{S}(t) \right] = \hat{S}(t)^2 \sum_{i:ct} \frac{d_i}{Y_i(Y_i - d_i)}
\]

The product limit estimator may be used to estimate the cumulative hazard function \(H(t) \) using the relationship

\[
\hat{H}(t) = -\log[\hat{S}(t)]
\]

Linear (Greenwood) Confidence Limits

This estimator may be used to create confidence limits for \(S(t) \) using the formula

\[
\hat{S}(t) \pm z_{1-\alpha/2} \sigma_{S}(t) \hat{S}(t)
\]

where

\[
\sigma_{S}^2(t) = \frac{\hat{V} \left[\hat{S}(t) \right]}{\hat{S}^2(t)}
\]

and \(z \) is the appropriate value from the standard normal distribution. We call this the *Linear (Greenwood) confidence interval*.

Log Hazard Confidence Limits

Better confidence limits may be calculated using the logarithmic transformation of the hazard functions. These limits are

\[
\hat{S}(t)^{1/\theta}, \hat{S}(t)^{\theta}
\]

where

\[
\theta = \exp \left\{ \frac{z_{1-\alpha/2} \sigma_{S}(t)}{\log[\hat{S}(t)]} \right\}
\]

ArcSine-Square Root Hazard Confidence Limits

Another set of confidence limits using an improving transformation is given by the (intimidating) formula

\[
\sin^2 \left\{ \max \left[0, \arcsin(\hat{S}(t)^{1/2}) - 0.5z_{1-\alpha/2} \sigma_{S}(t) \left(\frac{\hat{S}(t)}{1-\hat{S}(t)} \right)^{1/2} \right] \right\} \leq S(t) \leq
\sin^2 \left\{ \min \left[\frac{\pi}{2}, \arcsin(\hat{S}(t)^{1/2}) + 0.5z_{1-\alpha/2} \sigma_{S}(t) \left(\frac{\hat{S}(t)}{1-\hat{S}(t)} \right)^{1/2} \right] \right\}
\]

Nelson-Aalen Hazard Confidence Limits

An alternative estimator of \(H(t) \), which has better small sample size properties is the Nelson-Aalen estimator given by
Distribution (Weibull) Fitting

\[
\tilde{H}(t) = \begin{cases}
0 & \text{if } t < t_i \\
\sum_{t_i \leq t} \frac{d_i}{Y_i} & \text{if } t_i \leq t
\end{cases}
\]

The variance of this estimate is given by the formula

\[
\sigma^2_H(t) = \sum_{t_i \leq t} \frac{(Y_i - d_i)d_i}{(Y_i - 1)Y_i^2}
\]

The 100(1-alpha)% confidence limits for \(H(t)\) are calculated using

\[
\tilde{H}(t)\exp\left(\pm z_{1-alpha/2} \sigma_H(t) / \tilde{H}(t)\right)
\]

This hazard function may be used to generate the Nelson-Aalen estimator of \(S(t)\) using the formula

\[
\tilde{S}(t) = e^{\tilde{H}(t)}
\]

Using these formulas, a fourth set of confidence limits for \(S(t)\) may be calculated as

\[
\exp\left\{\tilde{H}(t) \pm z_{1-alpha/2} \sigma_H(t)\right\}
\]

Parametric Survival Distributions

This section presents the parametric probability distributions that may be analyzed with this procedure.

Normal Distribution

The normal distribution is one of the most commonly used in statistics. However, it is used infrequently as a lifetime distribution because it allows negative values while lifetimes are always positive. It has been found that the logarithms of failure times may be fit by the normal distribution. Hence the lognormal has become a popular distribution in reliability work, while the normal has been put on the sideline.

The normal distribution is indexed by a location (M) and a scale (S) parameter. A threshold parameter is meaningless in this case, since it is an adjustment to the location parameter. Using these symbols, the normal density function may be written as

\[
f(t|M,S) = \frac{1}{S\sqrt{2\pi}} e^{\frac{1}{2}\left(\frac{t-M}{S}\right)^2}, -\infty < M < \infty, S > 0, -\infty < t < \infty
\]

Location Parameter - M

The location parameter of the normal distribution is often called the mean.

Scale Parameter - S

The scale parameter of the normal distribution is usually called the standard deviation.

Lognormal Distribution

The normal distribution is one of the most commonly used in statistics. Although the normal distribution itself does not often work well with time-to-failure data, it has been found that the logarithm of failure time often does. Hence the lognormal has become a popular distribution in reliability work.
The lognormal distribution is indexed by a shape (S), a scale (M), and a threshold (D) parameter. Using these symbols, the three parameter lognormal density function may be written as

\[
f(t \mid M, S, D) = \frac{1}{(t-D)S\sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{\ln(t-D)-M}{S} \right)^2}, \quad -\infty < M < \infty, \quad S > 0, \quad -\infty < D < \infty, \quad t > D
\]

It is often more convenient to work with logarithms to the base 10 (denoted by log) rather than logarithms to the base e (denoted by ln). The lognormal10 density function is written as

\[
f(t \mid M, S, D) = \frac{1}{\ln(10)(t-D)S\sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{\log(t-D)-M}{S} \right)^2}, \quad -\infty < M < \infty, \quad S > 0, \quad -\infty < D < \infty, \quad t > D
\]

Shape Parameter - S

The shape parameter of the lognormal distribution of \(t \) is the standard deviation in the normal distribution of \(\ln(t-D) \) or \(\log(t-D) \). That is, the scale parameter of the normal distribution is the shape parameter of the lognormal distribution.

Scale Parameter - M

The scale parameter of the lognormal distribution \(t \) is the mean in the normal distribution of \(\ln(t-D) \) or \(\log(t-D) \). That is, the location parameter of the normal distribution is the scale parameter of the lognormal distribution.

Threshold Parameter - D

The threshold parameter is the minimum value of the random variable \(t \). When \(D \) is set to zero, we obtain the two parameter lognormal distribution. When a positive value is given to \(D \), we are inferring that no failures can occur between zero and \(D \).

Reliability Function

The reliability (or survivorship) function, \(R(t) \), gives the probability of surviving beyond time \(t \). For the Lognormal distribution, the reliability function is

\[
R(t) = 1 - \Phi \left(\frac{\ln(t-D)-M}{S} \right)
\]

where \(\Phi(z) \) is the standard normal distribution function.

The conditional reliability function, \(R(t, T) \), may also be of interest. This is the reliability of an item given that it has not failed by time \(T \). The formula for the conditional reliability is

\[
R(t) = \frac{R(T+t)}{R(T)}
\]

Hazard Function

The hazard function represents the instantaneous failure rate. For this distribution, the hazard function is

\[
h(t) = \frac{f(t)}{R(t)}
\]
Weibull Distribution

The Weibull distribution is named for Professor Waloddi Weibull whose papers led to the wide use of the distribution. He demonstrated that the Weibull distribution fit many different datasets and gave good results, even for small samples. The Weibull distribution has found wide use in industrial fields where it is used to model time to failure data.

The three parameter Weibull distribution is indexed by a shape (B), a scale (C), and a threshold (D) parameter. Using these symbols, the three parameter Weibull density function may be written as

\[f(t|B,C,D) = \frac{B}{C} \left(\frac{t-D}{C} \right)^{B-1} e^{-\left(\frac{t-D}{C}\right)^B}, \quad B > 0, \ C > 0, \ -\infty < D < \infty, \ t > D. \]

The symbol \(t \) represents the random variable (usually elapsed time). The threshold parameter \(D \) represents the minimum value of \(t \) that can occur. Setting the threshold to zero results in the common, two parameter Weibull distribution.

Shape Parameter - B

The shape (or power) parameter controls the overall shape of the density function. Typically, this value ranges between 0.5 and 8.0. The estimated standard errors and confidence limits displayed by the program are only valid when \(B > 2.0 \).

One of the reasons for the popularity of the Weibull distribution is that it includes other useful distributions as special cases or close approximations. For example, if

- \(B = 1 \) The Weibull distribution is identical to the exponential distribution.
- \(B = 2 \) The Weibull distribution is identical to the Rayleigh distribution.
- \(B = 2.5 \) The Weibull distribution approximates the lognormal distribution.
- \(B = 3.6 \) The Weibull distribution approximates the normal distribution.

Scale Parameter - C

The scale parameter only changes the scale of the density function along the time axis. Hence, a change in this parameter has the same effect on the distribution as a change in the scale of time—for example, from days to months or from hours to days. However, it does not change the actual shape of the distribution.

\(C \) is known as the characteristic life. No matter what the shape, 63.2% of the population fails by \(t = C+D \).

Some authors use \(1/C \) instead of \(C \) as the scale parameter. Although this is arbitrary, we prefer dividing by the scale parameter since that is how you usually scale a set of numbers. For example, remember how you create a z-score when dealing with the normal data or create a percentage by dividing by the maximum.

Threshold Parameter - D

The threshold parameter is the minimum value of the random variable \(t \). Often, this parameter is referred to as the location parameter. We use ‘threshold’ rather than ‘location’ to stress that this parameter sets the minimum time. We reserve ‘location’ to represent the center of the distribution. This is a fine point and we are not upset when people refer to this as the location parameter.

When \(D \) is set to zero, we obtain the two parameter Weibull distribution. It is possible, but unusual, for \(D \) to have a negative value. When using a search algorithm to find the estimated value of \(D \), a nonzero value will almost certainly be found. However, you should decide physically if a zero probability of failure in the interval between 0 and \(D \) is truly warranted.

A downward or upward sloping tail on the Weibull probability plot or values of \(B > 6.0 \) are indications that a nonzero threshold parameter will produce a better fit to your data.
Negative values of D represent an amount of time that has been subtracted from the actual times. On the other hand, positive values of D represent a period of time between the starting point and when any failures can occur. For example, positive values of D may represent the amount of time between the production of an item and when it is placed in service.

Relationship to the Extreme Value Distribution

The extreme value distribution is directly related to the Weibull distribution. If $x = \ln(t)$ and t follows the Weibull distribution, x follows the extreme value distribution.

Reliability Function

The reliability (or survivorship) function, $R(t)$, gives the probability of surviving beyond time t. For the Weibull distribution, the reliability function is

$$R(t) = e^{-\left(\frac{t-D}{C}\right)^B}$$

The reliability function is one minus the cumulative distribution function. That is,

$$R(t) = 1 - F(t)$$

The conditional reliability function, $R(t,T)$, may also be of interest. This is the reliability of an item given that it has not failed by time T. The formula for the conditional reliability is

$$R(t) = \frac{R(T + t)}{R(T)}$$

Hazard Function

The hazard function represents the instantaneous failure rate. For this distribution, the hazard function is

$$h(t) = \frac{f(t)}{R(t)} = B\left(\frac{t-D}{C}\right)^{B-1}$$

Depending on the values of the distribution’s parameters, the Weibull’s hazard function can be decreasing (when $B<1$), constant (when $B=1$ at $1/C$), or increasing (when $B>1$) over time.

Extreme Value Distribution

The extreme value distribution is occasionally used to model lifetime data. It is included here because of its close relationship to the Weibull distribution. It turns out that if t is distributed as a Weibull random variable, then $\ln(t)$ is distributed as the extreme value distribution.

The density of the extreme value distribution may be written as

$$f(t|M,S) = \frac{1}{S}\exp\left(\frac{t-M}{S}\right)\exp\left(-\exp\left(\frac{t-M}{S}\right)\right), \quad S > 0$$

Exponential Distribution

The exponential distribution was one of the first distributions used to model lifetime data. It has now been superceded by the Weibull distribution, but is still used occasionally. The exponential distribution may be found from the Weibull distribution by setting $B = 1$.
The exponential distribution is a model for the life of products with a constant failure rate. The two parameter exponential distribution is indexed by both a scale and a threshold parameter. The density of the exponential distribution may be written as

\[f(t|S,D) = \frac{1}{S} \exp\left(-\frac{t-D}{S}\right), \quad S > 0 \]

Scale Parameter - S

The scale parameter changes the scale of the density function along the time axis. Hence, a change in this parameter has the same effect on the distribution as a change in the scale of time—for example, from days to months or from hours to days. However, it does not change the actual shape of the distribution.

Some authors use \(1/S \) instead of \(S \) as the scale parameter. Although this is arbitrary, we prefer dividing by the scale parameter since that is how a set of numbers is usually scaled. For example, remember how z-scores are created when dealing with the normal distribution.

Threshold Parameter - D

The threshold parameter is the minimum value of the random variable \(t \). Often, this parameter is referred to as the location parameter. We use ‘threshold’ rather than ‘location’ to stress that this parameter sets the minimum time. We reserve ‘location’ to represent the center of the distribution. This is a fine point and we are not upset when people refer to this as the location parameter.

When \(D \) is set to zero, we obtain the two parameter exponential distribution. It is possible, but unusual, for \(D \) to have a negative value. When using a search algorithm to find the estimated value of \(D \), a nonzero value will almost certainly be found. However, you should decide physically if a zero probability of failure in the interval between 0 and \(D \) is truly warranted.

A downward or upward sloping tail on the exponential probability plot is an indication that a nonzero threshold parameter will produce a better fit to your data.

Negative values of \(D \) represent an amount of time that has been subtracted from the actual times. On the other hand, positive values of \(D \) represent a period of time between the starting point and when any failures can occur. For example, positive values of \(D \) may represent the amount of time between the production of an item and when it is placed in service.

Reliability Function

The reliability (or survivorship) function, \(R(t) \), gives the probability of surviving beyond time \(t \). For the exponential distribution, the reliability function is

\[R(t) = e^{-\frac{(t-D)}{S}} \]

Hazard Function

The hazard function represents the instantaneous failure rate. For this distribution, the hazard function is constant. The rate is given by the function

\[h(t) = \frac{f(t)}{R(t)} = \frac{1}{S} \]
Logistic Distribution

The density of the logistic distribution may be written as

\[f(t|M,S) = \frac{\exp\left(\frac{t-M}{S}\right)}{S \left[1 + \exp\left(\frac{t-M}{S}\right)\right]}, \quad S > 0 \]

Log-logistic Distribution

The density of the log-logistic distribution may be written as

\[f(t|M,S,D) = \frac{\exp\left(\ln(t-D) - M\right)}{(t-D)S \left[1 + \exp\left(\ln(t-D) - M\right)\right]}, \quad S > 0 \]

The log-logistic distribution is used occasionally to model lifetime data, but it is so similar to the lognormal and the Weibull distributions that it adds little and is thus often dropped from consideration.

Parameter Estimation

The parameters of the reliability distributions may be estimated by maximum likelihood or by applying least squares regression to the probability plot. The probability plot method is popular because it uses a nice graphic (the probability plot) which allows a visual analysis of the goodness of fit of the distribution to the data. Maximum likelihood estimation is usually favored by statisticians because it has been shown to be optimum in most situations and because it provides estimates of standard errors and confidence limits. However, there are situations in which maximum likelihood does not do as well as the regression approach. For example, maximum likelihood does not do a good job of estimating the threshold parameter. When you want to include the threshold parameter in your model, we suggest that you use the regression approach to estimate it and then treat the threshold value as a known quantity in the maximum likelihood estimation.

Maximum Likelihood

Maximum likelihood estimation consists of finding the values of the distribution parameters that maximize the log-likelihood of the data values. Loosely speaking, these are the values of the parameters which maximize the probability that the current set of data values occur.

The general form of the log-likelihood function is given by

\[L(P) = \sum_F \ln(f(P,t_k)) + \sum_R \ln(S(P,t_k)) + \sum_L \ln(F(P,t_k)) + \sum_I \ln(f(P,t_{uk}) - f(P,t_{lk})) \]

where \(F \) stands for the set of failed items, \(R \) stands for the set of right censored items, \(L \) stands for the set of left censored items, and \(I \) stands for the set of interval censored items. In the case of interval censored observations, \(t_{lk} \) represents the first time of the interval and \(t_{uk} \) represents the last time of the interval. Also, \(P \) represents one or two parameters as the case may be.

\(L(P) \) is maximized using two numerical procedures. First, a recently developed method called differential evolution is used. This is a robust maximization procedure that only requires evaluations of the function, but not its derivatives. The solution of the differential evolution phase is then used as starting values for the Newton-
Raphson algorithm. Newton-Raphson is used because it provides an estimate of the variance-covariance matrix of the parameters, which is needed in computing confidence limits. The amount of emphasis on the differential evolution phase as opposed to the Newton-Raphson phase may be controlled using the maximum number of iterations allowed for each. Numerical differentiation is used to compute the first and second order derivatives that are needed by the Newton-Raphson procedure.

Data Structure
Survival data is somewhat more difficult to enter because of the presence of various types of censoring.

Failed or Complete
A failed observation is one in which the time until the terminal event was measured exactly; for example, the machine stopped working or the mouse died of the disease being studied.

Right Censored
A right censored observation provides a lower bound for the actual failure time. All that is known is that the failure occurred (or will occur) at some point after the given time value. Right censored observations occur when a study is terminated before all items have failed. They also occur when an item fails due to an event other than the one of interest.

Left Censored
A left censored observation provides an upper bound for the actual failure time. All we know is that the failure occurred at some point before the time value. Left censoring occurs when the items are not checked for failure until some time after the study has begun. When a failed item is found, we do not know exactly when it failed, only that it was at some point before the left censor time.

Interval Censored or Readout
An interval censored observation is one in which we know that the failure occurred between two time values, but we do not know exactly when. This type of data is often called readout data. It occurs in situations where items are checked periodically for failures.

Sample Dataset
Most data sets require two (and often three) variables: the failure time variable, an optional censor variable indicating the type of censoring, and an optional count variable which gives the number of items occurring at that time. If the censor variable is omitted, all time values represent failed items. If the count variable is omitted, all counts are assumed to be one.

The table below shows the results of a study to test the failure rate of a particular machine. This particular experiment began with 30 items being tested. After the twelfth item failed at 152.7 hours, the experiment was stopped. The remaining eighteen observations were right censored. That is, we know that they will fail at some time in the future. These data are contained in the WEIBULL database.
Weibull dataset

<table>
<thead>
<tr>
<th>Time</th>
<th>Censor</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>24.4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>58.2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>68.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>69.1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>95.5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>96.6</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>97.0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>114.2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>123.2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>125.6</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>152.7</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>152.7</td>
<td>0</td>
<td>18</td>
</tr>
</tbody>
</table>

Procedure Options

This section describes the options available in this procedure.

Variables Tab

This panel specifies the probability distribution that is fit and the variables used in the analysis.

Time Variables

Time Variable

This variable contains the time values for both failed and censored observations. When interval (readout) data are used, this variable specifies the ending time of the interval.

Negative time values are treated as missing values. Zero time values are replaced by the value in the Zero field. These time values represent elapsed times. If your dataset is made up of dates (such as the failure date), you must subtract the starting date from the failure date so that you can analyze the elapsed time.

Start Time Variable

This variable contains the starting time for interval (readout) data. Hence its value is only used when the row’s censor value indicates an interval data type.

Negative time values are treated as missing values. Zero time values are replaced by the value in the Zero field.

Zero time Replacement Value

Under normal conditions, a respondent beginning the study is “alive” and cannot “die” until after some small period of time has elapsed. Hence, a time value of zero is not defined and is ignored (treated as a missing value). If a zero time value does occur in the database, it is replaced by this positive amount. If you do not want zero time values replaced, enter a “0.0” here.

This option is used when a “zero” on the database does not actually mean zero time. Instead, it means that the response occurred before the first reading was made and so the actual survival time is only known to be less.
Frequency Variable

This variable gives the count, or frequency, of the time displayed on that row. When omitted, each row receives a frequency of one. Frequency values should be positive integers. This is usually used to indicate the number of right censored values at the end of a study or the number of failures occurring within an interval. It may also be used to indicate ties for failure data.

Note that the probability plot estimation procedure requires that repeated time values be combined into a single observation which uses the value of this variable to represent the number of items.

Censor Variable

The values in this optional variable indicate the type of censoring active for each row. Four possible data types may be entered: failed (complete), right censored, left censored, or interval. The values used to indicate each data type are specified in the four boxes to the right. These values may be text or numeric.

Failed

When this value is entered in the Censor Variable, the corresponding time value is treated as a failed observation. The value may be a number or a letter. We suggest the letter “F” when you are in doubt as to what to use.

A failed observation is one in which the time until the event of interest was measured exactly; for example, the machine stopped working or the mouse died of the disease being studied. The exact failure time is known.

Right

When this value is entered in the Censor Variable, the corresponding time value is treated as a right censored data value. The value may be a number or a letter. We suggest the letter “R” when you are in doubt as to what to use.

A right censored observation provides a lower bound for the actual failure time. All that is known is that the failure time occurred (or will occur) at some point after the given time value. Right censored observations occur when a study is terminated before all items have failed. They also occur when an item fails due to an event other than the one of interest.

Left

When this value is entered in the Censor Variable, the corresponding time value is treated as a left censored data value. The value may be a number or a letter. We suggest the letter “L” when you are in doubt as to what to use.

A left censored observation provides an upper bound for the actual failure time. All we know is that the failure time occurred at some point before the time value. Left censoring occurs when the items are not checked until some time after the study has begun. When a failed item is found, we do not know exactly when it failed, only that it was at some point before the left censor time.

Interval

When this value is entered in the Censor Variable, the corresponding time value is treated as an interval censored data value. The value may be a number or a letter. We suggest the letter “I” when you are in doubt as to what to use. When interval censoring is specified, the program uses both the Time Variable and the Start Time Variable.

An interval censored observation is one in which we know that the failure occurred between the two time values, but we do not know exactly when. This type of data is often called readout data. It occurs in situations where items are checked periodically for failures.

Note that when interval data are obtained, the first observation is usually left censored and the last observation is usually right censored.
Group Variable

An optional categorical (grouping) variable may be specified. If it is used, a separate analysis is conducted for each unique value of this variable.

Distribution to Fit

Distribution

This option specifies which probability distribution is fit. All results are for the specified probability distribution. If you select Find Best, the program displays reports and graphs that will help you select an appropriate probability distribution. When in the Find Best mode, the regular individual distribution reports and graphs are not displayed.

Distribution to Fit – Distributions Searched

Exponential - Weibull

These options are used by the distribution search procedure (Distribution = Find Best) to specify which of the available probability distributions should be included in the search.

Options

Threshold (Shift) Parameter

This option controls the setting and estimation of the threshold parameter. When this value is set to zero (which is the default) the threshold parameter is not fit. You can put in a fixed, nonzero value for the threshold here or you can specify ‘Search 0.’ Specifying a fixed value sets the threshold to that value. Specifying ‘Search 0’ causes a search for the threshold parameter to be conducted during the probability plot regression phase. The probability plot estimate is then used as if it were a fixed value in the maximum likelihood estimation phase.

In the case of the probability plot (least squares) estimates, a grid search is conducted for the value of the threshold that maximizes the correlation of the data on the probability plot.

Options Tab

The following options control the algorithms used during parameter estimation.

Estimation Options – Differential Evolution

Maximum Generations

Specify the maximum number of differential evolution iterations used to find a starting value before switching to Newton’s method. A value between 100 and 200 is usually adequate. For large datasets (number of rows greater than 1000), you may want to reduce this number. Your strategy would be to let this algorithm provide reasonable starting values for Newton’s algorithm which converges much more quickly when it has good starting values.

Individuals

This is the number of trial points that are used by the differential evolution algorithm at each iteration. In the terminology of differential evolution, this is the population size. A value between 15 and 25 is recommended. More points may dramatically increase the running time. Fewer points may not allow the algorithm to converge.
Inheritance
This value controls the amount of movement of the differential evolution algorithm toward the current best. Usually, a value between 0.5 and 1.0 is used. We suggest 0.85. A larger value accelerates movement toward the current best, but reduces the chance of locating the global maximum. A smaller value improves the chances of finding the global, rather than a local, solution, but increases the number of iterations until convergence.

Mutation Rate
This value controls the mutation rate of the differential evolution algorithm. This is the probability that the random adjustment of a parameter is set to zero—which is a mutation in the algorithm. Values between 0 and 1 are allowed. A value of 0.3 is recommended.

Grid Range
This is the initial range about each of the initial parameter values that is sampled during the differential evolution algorithm. The algorithm is not limited to this range, but specifying a value large enough to include the solution will increase the probability of convergence.

Estimation Options – Newton’s Method

Maximum Iterations
This option assigns a maximum to the number of iterations used while performing Newton’s method. We suggest a value of 100. This should be large enough to let the algorithm converge, but small enough to avoid a large delay if convergence cannot be obtained.

Maximum Restarts
If Newton’s method begins to diverge, it is restarted using slightly different starting values. This option specifies the number of times the algorithm is restarted.

Minimum Change
This value is used to terminate Newton’s method. When the relative change in all of the parameters is less than this amount, Newton’s method is terminated.

Step Adjustment
Newton’s method calculates a change for each parameter value at each step. Instead of taking the whole parameter change, this option lets you take only a fraction of the indicated change. For datasets that diverge, taking only partial steps may allow the algorithm to converge. In essence, the algorithm tends to over correct the parameter values. This factor allows you to dampen this over correction. We suggest a value of about 0.2. This may increase the number of iterations (and you will have to increase the Max Iterations accordingly), but it provides a greater likelihood that the algorithm will converge.

Step Reduction
When Newton’s method fails to converge, the Step Adjustment is reduced by multiplying by this amount. This forces Newton’s method to take smaller steps which provides a better chance at convergence.

Estimation Options – Miscellaneous

Derivatives
This value specifies the machine precision value used in calculating numerical derivatives. Slight adjustments to this value can change the accuracy of the numerical derivatives (which impacts the variance/covariance matrix estimation).

Remember from calculus that the derivative is the slope calculated at a point along the function. It is the limit found by calculating the slope between two points on the function curve that are very close together. Numerical
differentiation mimics this limit by calculating the slope between two function points that are very close together and then computing the slope. This value controls how close together these two function points are.

Numerical analysis suggests that this distance should be proportional to the machine precision of the computer. We have found that our algorithm achieves four-place accuracy in the variance-covariance matrix no matter what value is selected here (within reason). However, increasing or decreasing this value by two orders of magnitude may achieve six or seven place accuracy in the variance-covariance matrix. We have found no way to find the optimal value except trial and error.

Note that the parameter estimates do not seem to be influenced a great deal, only their standard errors.

Parameter 1 (Shape)
Specify a starting value for parameter one, the shape (location) parameter. If convergence fails, try a different value here or try increasing the grid range. Select ‘Data’ to calculate an appropriate value from the data.

Parameter 2 (Scale)
Specify a starting value for parameter two, the scale parameter. If convergence fails, try a different value here or try increasing the grid range. Select ‘Data’ to calculate an appropriate value from the data.

Prob Plot Model
When a probability plot method is used to estimate the parameters of the probability distribution, this option designates which variable (time or frequency) is used as the dependent variable.

- **F=A+B(Time)**
 On the probability plot, F is regressed on Time and the resulting intercept and slope are used to estimate the parameters. See the discussion of probability plots below for more information.

- **Time=A+B(F)**
 On the probability plot, Time is regressed on F and the resulting intercept and slope are used to estimate the parameters.

Hazard Options
The following options control the calculation of the hazard rate and cumulative hazard function.

Bandwidth Method
This option designates the method used to specify the smoothing bandwidth used to calculate the hazard rate. Specify an amount or a percentage of the time range. The default is to specify a percent of the time range.

Bandwidth Amount
This option specifies the bandwidth size used to calculate the hazard rate. If the Bandwidth Method was set to Amount, this is a value in time units (such as 10 hours). If Percentage of Time Range was selected, this is a percentage of the overall range of the data.

Smoothing Kernel
This option specifies the kernel function used in the smoothing to estimate the hazard rate. You can select uniform, Epanechnikov, or biweight smoothing. The actual formulas for these functions are provided later in the Hazard Rate output section.

Product Limit and Hazard Confidence Limits Method
The standard nonparametric estimator of the reliability function is the Product Limit estimator. This option controls the method used to estimate the confidence limits of the estimated reliability. The options are Linear, Log Hazard, Arcsine Square Root, and Nelson-Aalen. The formulas used by these options were presented earlier. Although the Linear (Greenwood) is the most commonly used, recent studies have shown that either the Log
Reports Tab

The following options control which reports are displayed and the format of those reports.

Select Reports

Data Summary Report - Parametric Hazard Rate Report
These options indicate whether to display the corresponding report.

Alpha Level
This is the value of alpha used in the calculation of confidence limits. For example, if you specify 0.04 here, then 96% confidence limits will be calculated.

Report Options

Precision
Specify the precision of numbers in the report. A single-precision number will show seven-place accuracy, while a double-precision number will show thirteen-place accuracy. Note that the reports are formatted for single precision. If you select double precision, some numbers may run into others. Also note that all calculations are performed in double precision regardless of which option you select here. This is for reporting purposes only.

Variable Names
This option lets you select whether to display only variable names, variable labels, or both.

Value Labels
This option lets you select whether to display only values, value labels, or both. Use this option if you want to automatically attach labels to the values of the group variable (like 1=Yes, 2=No, etc.). See the section on specifying Value Labels elsewhere in this manual.

Report Options – Survival and Haz Rt Calculation Values

Percentiles
This option specifies a list of percentiles (range 1 to 99) at which the reliability (survivorship) is reported. The values should be separated by commas.

Specify sequences with a colon, putting the increment inside parentheses after the maximum in the sequence. For example: 5:25(5) means 5,10,15,20,25 and 1:5(2),10:20(2) means 1,3,5,10,12,14,16,18,20.

Times
This option specifies a list of times at which the percent surviving is reported. Individual values are separated by commas. You can specify a sequence by specifying the minimum and maximum separate by a colon and putting the increment inside parentheses. For example: 5:25(5) means 5,10,15,20,25. Avoid 0 and negative numbers. Use ‘(10)’ alone to specify ten values between zero and the maximum value found in the data.
Report Options – Residual Life Calculation Values

Residual Life Percentiles
This option specifies a list of up to four percentiles (range 1 to 99) at which the residual life is reported. The values should be separated by commas. Only the first four values are used on the report.

Report Options – Decimal Places

Time
This option specifies the number of decimal places shown on reported time values.

Probability
This option specifies the number of decimal places shown on reported probability and hazard values.

Plots Tab
The following options control which plots are displayed.

Select Plots

Survival/Reliability Plot - Probability Plot
These options specify which plots are displayed. Click the plot format button to change the plot settings.

Select Plots – Plots Displayed

Show Individual Plots
When checked, this option specifies that a separate chart is to be displayed for each group (as specified by the Group Variable).

Show Combined Plots
When checked, this option specifies that a chart combining all groups is to be displayed.

Plot Options

Line Resolution
This option specifies the number of points along the time axis at which calculations are made. This controls the resolution of the plots. Usually, a value between 50 and 100 is sufficient.

Plot Options – Plot Arrangement

Two Plots Per Line
When a lot of charts are specified, checking this option will cause the size of the charts to be reduced so that they can be displayed two per line. This will reduce the overall size of the output.
Storage Tab

These options control the storage of information back to the dataset for further use.

Data Storage Variables

Failure Time - Parametric UCL

Each of the fields on these two options let you specify columns on the dataset to which the corresponding data are automatically stored.

Warning: existing data are replaced, so make sure that the columns you select are empty.

Example 1 – Fitting a Weibull Distribution

This section presents an example of how to fit the Weibull distribution. The data used were shown above and are found in the Weibull dataset.

You may follow along here by making the appropriate entries or load the completed template Example 1 by clicking on Open Example Template from the File menu of the Distribution (Weibull) Fitting window.

1. Open the Weibull dataset.
 - From the File menu of the NCSS Data window, select Open Example Data.
 - Click on the file Weibull.NCSS.
 - Click Open.

2. Open the Distribution (Weibull) Fitting window.
 - On the menus, select Analysis, then Survival / Reliability, then Distribution (Weibull) Fitting. The Distribution (Weibull) Fitting procedure will be displayed.
 - On the menus, select File, then New Template. This will fill the procedure with the default template.

3. Specify the variables.
 - On the Distribution (Weibull) Fitting window, select the Variables tab.
 - Double-click in the Time Variable box. This will bring up the variable selection window.
 - Select Time from the list of variables and then click Ok.
 - Double-click in the Frequency Variable box. This will bring up the variable selection window.
 - Select Count from the list of variables and then click Ok.
 - Double-click in the Censor Variable box. This will bring up the variable selection window.
 - Select Censor from the list of variables and then click Ok.

4. Set the Derivative constant.
 - On the Distribution (Weibull) Fitting window, select the Options tab.
 - Set the Derivatives value to 0.00006.

5. Specify the plots.
 - On the Distribution (Weibull) Fitting window, select the Plots tab.
 - In addition to the items that are already checked, check Hazard Function Plot and Hazard Rate Plot.
 - Click the format button for each survival plot and check the Parametric Confidence Limits check box.

6. Run the procedure.
 - From the Run menu, select Run Procedure. Alternatively, just click the green Run button.
Data Summary Section

<table>
<thead>
<tr>
<th>Type of Observation</th>
<th>Rows</th>
<th>Count</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failed</td>
<td>12</td>
<td>12</td>
<td>12.5</td>
<td>152.7</td>
</tr>
<tr>
<td>Right Censored</td>
<td>1</td>
<td>18</td>
<td>152.7</td>
<td>152.7</td>
</tr>
<tr>
<td>Left Censored</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interval Censored</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
<td>30</td>
<td>12.5</td>
<td>152.7</td>
</tr>
</tbody>
</table>

This report displays a summary of the amount of data that were analyzed. Scan this report to determine if there were any obvious data errors by double checking the counts and the minimum and maximum.

Parameter Estimation Section

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Probability Plot Estimate</th>
<th>Maximum Likelihood Estimate</th>
<th>MLE Standard Error</th>
<th>MLE 95% Lower Conf. Limit</th>
<th>MLE 95% Upper Conf. Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shape</td>
<td>1.26829</td>
<td>1.511543</td>
<td>0.4130415</td>
<td>0.8847542</td>
<td>2.582369</td>
</tr>
<tr>
<td>Scale</td>
<td>279.7478</td>
<td>238.3481</td>
<td>57.24825</td>
<td>148.8551</td>
<td>381.6451</td>
</tr>
<tr>
<td>Threshold</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log Likelihood</td>
<td>-80.05649</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>259.7101</td>
<td>214.9709</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>209.5383</td>
<td>187.0276</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td>82.19741</td>
<td>116.3898</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sigma</td>
<td>206.2112</td>
<td>144.9314</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential Evolution Iterations</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Newton Raphson Restart</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Newton Raphson Iterations</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This report displays parameter estimates along with standard errors and confidence limits for the maximum likelihood estimates. In this example, we have set the threshold parameter to zero so we are fitting the two-parameter Weibull distribution.

Probability Plot Estimate

This estimation procedure uses the data from the probability plot to estimate the parameters. The estimation formula depends on which option was selected for the Prob Plot Model (in the Estimation tab window).

Prob Plot Model: F=A+B(Time)

The cumulative distribution function \(F(t) \)

\[
F(t) = 1 - e^{-\left(\frac{t-D}{C}\right)^{B}}
\]

may be rearranged as (assuming \(D \) is zero)

\[
\ln(-\ln(1 - F(t))) = -B\ln(C) + B\ln(t)
\]

This is now in a linear form. If we let \(y = \ln(-\ln(1 - F(t))) \) and \(x = \ln(t) \), the above equation becomes

\[
y = -B\ln(C) + Bx
\]

Using simple linear regression, we can estimate the intercept and slope. Using these estimates, we obtain estimates of the Weibull parameters \(B \) and \(C \) as

\[
B = \text{slope}
\]
and

\[C = \exp\left(-\frac{\text{intercept}}{B} \right) \]

We assumed that \(D \) was zero. If \(D \) is not zero, it is treated as a known value and subtracted from the time values before the above regression is calculated.

Prob Plot Model: Time=A+B(F)

The cumulative distribution function \(F(t) \)

\[F(t) = 1 - e^{-\left(\frac{t-D}{c} \right)^B} \]

may be rearranged as (assuming \(D \) is zero)

\[\left(\frac{1}{B} \right) \ln(-\ln(1-F(t))) + \ln(C) = \ln(t) \]

This is now in a linear form. If we let \(x = \ln(-\ln(1-F(t))) \) and \(y = \ln(t) \), the above equation becomes

\[y = \frac{1}{B} x + \ln(C) \]

Using simple linear regression, we can estimate the intercept and slope. Using these estimates, we obtain estimates of the Weibull parameters \(B \) and \(C \) as

\[B = \frac{1}{\text{slope}} \]

and

\[C = \exp(\text{intercept}) \]

Parameter estimates for the other distributions are found in a similar manner.

Maximum Likelihood Estimates of B, C, M, and S

These are the usual maximum likelihood estimates (MLE) of the parameters. The formulas for the standard errors and confidence limits use the estimated variance covariance matrix which is the inverse of the Fisher information matrix, \(\{vc_{i,j}\} \). The standard errors are given as the square roots of the diagonal elements \(vc_{1,1} \) and \(vc_{2,2} \).

In the case of the Weibull distribution, the confidence limits for \(B \) are

\[
\hat{B}_{\text{lower},1-\alpha/2} = \exp\left(\frac{z_{1-\alpha/2} \sqrt{vc_{1,1}}}{\hat{B}} \right)
\]

\[
\hat{B}_{\text{upper},1-\alpha/2} = \hat{B} \exp\left(\frac{z_{1-\alpha/2} \sqrt{vc_{1,1}}}{\hat{B}} \right)
\]

In the case of the Weibull distribution, the confidence limits for \(C \) are
Distribution (Weibull) Fitting

\[\hat{C}_{\text{lower},1-\alpha/2} = \hat{C} \exp \left\{ -\frac{z_{1-\alpha/2} \sqrt{C^2}}{C} \right\} \]

\[\hat{C}_{\text{upper},1-\alpha/2} = \hat{C} \exp \left\{ \frac{z_{1-\alpha/2} \sqrt{C^2}}{C} \right\} \]

In the case of all other distributions, the confidence limits for \(M \) are

\[\hat{M}_{\text{lower},1-\alpha/2} = \hat{M} - z_{1-\alpha/2} \sqrt{\hat{V}_{C,1,1}} \]

\[\hat{M}_{\text{upper},1-\alpha/2} = \hat{M} + z_{1-\alpha/2} \sqrt{\hat{V}_{C,1,1}} \]

In the case of all other distributions, the confidence limits for \(S \) are

\[\hat{S}_{\text{lower},1-\alpha/2} = \hat{S} \exp \left\{ -\frac{z_{1-\alpha/2} \sqrt{\hat{V}_{C,2,2}}}{S} \right\} \]

\[\hat{S}_{\text{upper},1-\alpha/2} = \hat{S} \exp \left\{ \frac{z_{1-\alpha/2} \sqrt{\hat{V}_{C,2,2}}}{S} \right\} \]

Log Likelihood

This is the value of the log likelihood function calculated using the maximum likelihood parameter estimates. This is the value of the function being maximized. It is often used as a goodness-of-fit statistic. You can compare the log likelihood values achieved by each distribution and select as the best fitting the one with the maximum value.

Note that we have found that several popular statistical programs calculate this value without including all of the terms. Hence, they present erroneous values. The error occurs because they omit the \(1/t \) term in the denominator of the lognormal and the Weibull log-likelihood functions. Also, they may fail to include a correction for using the logarithm to the base 10 in the lognormal10. Hopefully, future editions of these programs will calculate the likelihood correctly.

Mean

This is the mean time to failure (MTTF). It is the mean of the random variable (failure time) being studied given that the fitted distribution provides a reasonable approximation to your data’s actual distribution. In the case of the Weibull distribution, the formula for the mean is

\[\text{Mean} = D + C \Gamma \left(1 + \frac{1}{B} \right) \]

where \(\Gamma(x) \) is the gamma function.

Median

The median is the value of \(t \) where \(F(t)=0.5 \). In the case of the Weibull distribution, the formula for the median is
Distribution (Weibull) Fitting

\[Median = D + C(\log 2)^{1/B} \]

Mode
The mode of the Weibull distribution is given by

\[Mode = D + C\left(1 - \frac{1}{B}\right)^{1/B} \]

Sigma
This is the standard deviation of the failure time. The formula for the standard deviation (sigma) of a Weibull random variable is

\[\sigma = C\sqrt{\Gamma\left(1 + \frac{2}{B}\right) - \Gamma^2\left(1 + \frac{1}{B}\right)} \]

where \(\Gamma(x) \) is the gamma function.

Differential Evolution Iterations
This is the number of iterations used in the differential evolution phase of the maximum likelihood algorithm. If this value is equal to the maximum number of generations allowed, the algorithm did not converge, so you should increase the maximum number of generations and re-run the procedure.

Newton Raphson Restarts
This is the number of times the Newton Raphson phase of the maximum likelihood algorithm was restarted because the algorithm diverged. Make sure that the maximum number of restarts was not reached.

Newton Raphson Iterations
This is the number of iterations used in the Newton Raphson phase of the maximum likelihood algorithm. If this value is equal to the maximum number of iterations allowed, the algorithm did not converge, so you should increase the maximum number of iterations and re-run the procedure.

Inverse of Fisher Information Matrix

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Shape</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shape</td>
<td>0.1706034</td>
<td>-14.33367</td>
</tr>
<tr>
<td>Scale</td>
<td>-14.33367</td>
<td>3273.362</td>
</tr>
</tbody>
</table>

This table gives the inverse of the Fisher information matrix evaluated at the maximum likelihood estimates which is an asymptotic estimate of the variance-covariance matrix of the two parameters. These values are calculated using numerical second-order derivatives.

Note that because these are numerical derivatives based on a random start provided by differential evolution, the values of the last two decimal places may vary from run to run. You can stabilize the values by changing the value of Derivatives constant, but this will have little effect on the overall accuracy of your results.
Kaplan-Meier Product-Limit Survival Distribution

<table>
<thead>
<tr>
<th>Time</th>
<th>Survival</th>
<th>95% Lower C.L.</th>
<th>95% Upper C.L.</th>
<th>Hazard Fn</th>
<th>95% Lower C.L.</th>
<th>95% Upper C.L.</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5</td>
<td>0.9667</td>
<td>0.9024</td>
<td>1.0000</td>
<td>0.0339</td>
<td>0.0000</td>
<td>0.1027</td>
<td>30</td>
</tr>
<tr>
<td>24.4</td>
<td>0.9333</td>
<td>0.8441</td>
<td>1.0000</td>
<td>0.0690</td>
<td>0.0000</td>
<td>0.1695</td>
<td>29</td>
</tr>
<tr>
<td>58.2</td>
<td>0.8900</td>
<td>0.7926</td>
<td>1.0000</td>
<td>0.1054</td>
<td>0.0000</td>
<td>0.2324</td>
<td>28</td>
</tr>
<tr>
<td>68.0</td>
<td>0.8667</td>
<td>0.7450</td>
<td>0.9883</td>
<td>0.1431</td>
<td>0.0118</td>
<td>0.2943</td>
<td>27</td>
</tr>
<tr>
<td>69.1</td>
<td>0.8333</td>
<td>0.7000</td>
<td>0.9667</td>
<td>0.1823</td>
<td>0.0339</td>
<td>0.3567</td>
<td>26</td>
</tr>
<tr>
<td>95.5</td>
<td>0.8000</td>
<td>0.6569</td>
<td>0.9431</td>
<td>0.2231</td>
<td>0.0585</td>
<td>0.4203</td>
<td>25</td>
</tr>
<tr>
<td>96.6</td>
<td>0.7667</td>
<td>0.6153</td>
<td>0.9180</td>
<td>0.2657</td>
<td>0.0855</td>
<td>0.4856</td>
<td>24</td>
</tr>
<tr>
<td>97.0</td>
<td>0.7333</td>
<td>0.5751</td>
<td>0.8916</td>
<td>0.3012</td>
<td>0.1148</td>
<td>0.5532</td>
<td>23</td>
</tr>
<tr>
<td>114.2</td>
<td>0.7000</td>
<td>0.5360</td>
<td>0.8640</td>
<td>0.3567</td>
<td>0.1462</td>
<td>0.6236</td>
<td>22</td>
</tr>
<tr>
<td>123.2</td>
<td>0.6667</td>
<td>0.4980</td>
<td>0.8354</td>
<td>0.4055</td>
<td>0.1799</td>
<td>0.6972</td>
<td>21</td>
</tr>
<tr>
<td>125.6</td>
<td>0.6333</td>
<td>0.4609</td>
<td>0.8058</td>
<td>0.4568</td>
<td>0.2160</td>
<td>0.7746</td>
<td>20</td>
</tr>
<tr>
<td>152.7</td>
<td>0.6000</td>
<td>0.4247</td>
<td>0.7753</td>
<td>0.5108</td>
<td>0.2545</td>
<td>0.8564</td>
<td>19</td>
</tr>
<tr>
<td>152.7+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

This report displays the Kaplan-Meier product-limit survival distribution and hazard function along with confidence limits. The formulas used were presented earlier. Note that these estimates do not use the selected parametric distribution in any way. They are the nonparametric estimates and are completely independent of the distribution that is being fit.

Note that censored observations are marked with a plus sign on their time value. The survival and hazard functions are not calculated for censored observations. Also note that left censored and interval censored observations are treated as failed observations for the calculations on this report.

Also note that the Sample Size is given for each time period. As time progresses, participants are removed from the study, reducing the sample size. Hence, the survival results near the end of the study are based on only a few participants and are therefore less precise. This shows up as a widening of the confidence limits.

Nonparametric Hazard Rate Section

<table>
<thead>
<tr>
<th>Failure Time</th>
<th>Nonparametric Hazard Rate</th>
<th>Std Error of Hazard Rate</th>
<th>95% Lower Limit of Hazard Rate</th>
<th>95% Upper Limit of Hazard Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>0.0016</td>
<td>0.0014</td>
<td>0.0003</td>
<td>0.0090</td>
</tr>
<tr>
<td>16.0</td>
<td>0.0019</td>
<td>0.0014</td>
<td>0.0005</td>
<td>0.0078</td>
</tr>
<tr>
<td>24.0</td>
<td>0.0016</td>
<td>0.0012</td>
<td>0.0004</td>
<td>0.0066</td>
</tr>
<tr>
<td>32.0</td>
<td>0.0015</td>
<td>0.0010</td>
<td>0.0004</td>
<td>0.0052</td>
</tr>
<tr>
<td>40.0</td>
<td>0.0016</td>
<td>0.0009</td>
<td>0.0005</td>
<td>0.0047</td>
</tr>
<tr>
<td>48.0</td>
<td>0.0021</td>
<td>0.0011</td>
<td>0.0008</td>
<td>0.0059</td>
</tr>
<tr>
<td>56.0</td>
<td>0.0024</td>
<td>0.0014</td>
<td>0.0008</td>
<td>0.0075</td>
</tr>
<tr>
<td>64.0</td>
<td>0.0027</td>
<td>0.0015</td>
<td>0.0009</td>
<td>0.0082</td>
</tr>
<tr>
<td>72.0</td>
<td>0.0036</td>
<td>0.0016</td>
<td>0.0015</td>
<td>0.0086</td>
</tr>
<tr>
<td>80.0</td>
<td>0.0042</td>
<td>0.0017</td>
<td>0.0019</td>
<td>0.0095</td>
</tr>
<tr>
<td>88.0</td>
<td>0.0043</td>
<td>0.0018</td>
<td>0.0018</td>
<td>0.0099</td>
</tr>
<tr>
<td>96.0</td>
<td>0.0045</td>
<td>0.0019</td>
<td>0.0019</td>
<td>0.0105</td>
</tr>
<tr>
<td>104.0</td>
<td>0.0052</td>
<td>0.0022</td>
<td>0.0023</td>
<td>0.0117</td>
</tr>
<tr>
<td>112.0</td>
<td>0.0054</td>
<td>0.0022</td>
<td>0.0024</td>
<td>0.0121</td>
</tr>
<tr>
<td>120.0</td>
<td>0.0047</td>
<td>0.0021</td>
<td>0.0019</td>
<td>0.0113</td>
</tr>
<tr>
<td>128.0</td>
<td>0.0038</td>
<td>0.0020</td>
<td>0.0014</td>
<td>0.0105</td>
</tr>
<tr>
<td>136.0</td>
<td>0.0038</td>
<td>0.0021</td>
<td>0.0013</td>
<td>0.0111</td>
</tr>
<tr>
<td>144.0</td>
<td>0.0038</td>
<td>0.0036</td>
<td>0.0006</td>
<td>0.0246</td>
</tr>
<tr>
<td>152.0</td>
<td>0.0081</td>
<td>0.0081</td>
<td>0.0011</td>
<td>0.0575</td>
</tr>
</tbody>
</table>

This report displays the nonparametric estimate of the hazard rate, \(h(t) \). Note that this is not the cumulative hazard function \(H(t) \) shown in the last report. It is the derivative of \(H(t) \). Since it is \(h(t) \) that needs to be studied in order to determine the characteristics of the failure process, this report and its associated plot (which is shown below) become very important.
The formula for the Nelson-Aalen estimator of the cumulative hazard is

\[\tilde{H}(t) = \begin{cases} 0 & \text{if } t < t_i \medskip \\ \sum_{i,t_i \leq t} \frac{d_i}{Y_i} & \text{if } t_i \leq t \end{cases} \]

The variance of this estimate is

\[\sigma^2_{\tilde{h}}(t) = \sum_{i,t_i \leq t} \frac{(Y_i - d_i)d_i}{(Y_i - 1)Y_i^2} \]

In the above equation, \(d_i \) represents the number of deaths at time \(t_i \) and \(Y_i \) represents the number of individuals who are at risk at time \(t_i \).

The hazard rate is estimated using kernel smoothing of the Nelson-Aalen estimator as given in Klein and Moeschberger (1997). The formulas for the estimated hazard rate and its variance are given by

\[\hat{h}(t) = \frac{1}{b} \sum_D K\left(\frac{t - t_k}{b}\right) \Delta \tilde{H}(t_k) \]

\[\sigma^2[\hat{h}(t)] = \frac{1}{b^2} \sum_D K\left(\frac{t - t_k}{b}\right)^2 \Delta \hat{V}[\tilde{H}(t_k)] \]

where \(b \) is the bandwidth about \(t \) and

\[\Delta \tilde{H}(t_k) = \tilde{H}(t_k) - \tilde{H}(t_{k-1}) \]

\[\Delta \hat{V}[\tilde{H}(t_k)] = \hat{V}[\tilde{H}(t_{k-1})] - \hat{V}[\tilde{H}(t_k)] \]

Three choices are available for the kernel function \(K(x) \) in the above formulation. These are defined differently for various values of \(t \). Note that the \(t_k \)'s are for failed items only and that \(t_D \) is the maximum failure time. For the uniform kernel the formulas for the various values of \(t \) are

\[K(x) = \frac{1}{2} \quad \text{for } t - b \leq x \leq t + b \]

\[K_L(x) = \frac{4(1+q^3)}{(1+q)^4} + \frac{6(1-q)}{(1+q)^3}x \quad \text{for } t < b \]

\[K_R(x) = \frac{4(1+r^3)}{(1+r)^4} - \frac{6(1-r)}{(1+r)^3}x \quad \text{for } t_D - b < x < t_D \]

where

\[q = \frac{t}{b} \]

and

\[r = \frac{t_D - t}{b} \]

For the Epanechnikov kernel the formulas for the various values of \(t \) are
Distribution (Weibull) Fitting

\[K(x) = \frac{3}{4}(1 - x^2) \quad \text{for} \quad t - b \leq t \leq t + b \]

\[K_L(x) = K(x)(A + Bx) \quad \text{for} \quad t < b \]

\[K_R(x) = \frac{4(1 + r^3)}{(1 + r)^2} - \frac{6(1 - r)}{(1 + r)^3}x \quad \text{for} \quad t_D - b < t < t_D \]

where

\[A = \frac{64\left(2 - 4q + 6q^2 - 3q^3\right)}{(1 + q)^4(19 - 18q + 3q^2)} \]

\[B = \frac{240(1 - q)^2}{(1 + q)^4(19 - 18q + 3q^2)} \]

\[q = \frac{t}{b} \]

\[r = \frac{t_D - t}{b} \]

For the biweight kernel the formulas for the various values of \(t \) are

\[K(x) = \frac{15}{16}(1 - x^2)^2 \quad \text{for} \quad t - b \leq t \leq t + b \]

\[K_L(x) = K(x)(A + Bx) \quad \text{for} \quad t < b \]

\[K_R(x) = K(-x)(A - Bx) \quad \text{for} \quad t_D - b < t < t_D \]

where

\[A = \frac{64\left(8 - 24q + 48q^2 - 45q^3 + 15q^4\right)}{(1 + q)^5(81 - 168q + 126q^2 - 40q^3 + 5q^4)} \]

\[B = \frac{1120(1 - q)^3}{(1 + q)^5(81 - 168q + 126q^2 - 40q^3 + 5q^4)} \]

\[q = \frac{t}{b} \]

\[r = \frac{t_D - t}{b} \]

Confidence intervals for \(h(t) \) are given by

\[\hat{h}(t) \exp \left[\pm \frac{z_{1-\alpha/2}}{\hat{h}(t)} \sqrt{\frac{\hat{h}(t)}{n}} \right] \]
Care must be taken when using these kernel-smoothed estimators since they are actually estimating a smoothed version of the hazard rate, not the hazard rate itself. Thus, they may be biased and are greatly influenced by the choice of the bandwidth \(b \). We have found that you must experiment with \(b \) to find an appropriate value for each dataset.

Parametric Hazard Rate Section

<table>
<thead>
<tr>
<th>Failure Time</th>
<th>Weibull Hazard Rate</th>
<th>95% Lower Conf. Limit of Hazard Rate</th>
<th>95% Upper Conf. Limit of Hazard Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>0.0011</td>
<td>0.0005</td>
<td>0.0023</td>
</tr>
<tr>
<td>16.0</td>
<td>0.0016</td>
<td>0.0008</td>
<td>0.0032</td>
</tr>
<tr>
<td>24.0</td>
<td>0.0020</td>
<td>0.0010</td>
<td>0.0040</td>
</tr>
<tr>
<td>32.0</td>
<td>0.0023</td>
<td>0.0011</td>
<td>0.0046</td>
</tr>
<tr>
<td>40.0</td>
<td>0.0025</td>
<td>0.0012</td>
<td>0.0052</td>
</tr>
<tr>
<td>48.0</td>
<td>0.0028</td>
<td>0.0014</td>
<td>0.0057</td>
</tr>
<tr>
<td>56.0</td>
<td>0.0030</td>
<td>0.0015</td>
<td>0.0062</td>
</tr>
<tr>
<td>64.0</td>
<td>0.0032</td>
<td>0.0016</td>
<td>0.0066</td>
</tr>
<tr>
<td>72.0</td>
<td>0.0034</td>
<td>0.0017</td>
<td>0.0070</td>
</tr>
<tr>
<td>80.0</td>
<td>0.0036</td>
<td>0.0018</td>
<td>0.0074</td>
</tr>
<tr>
<td>88.0</td>
<td>0.0038</td>
<td>0.0019</td>
<td>0.0079</td>
</tr>
<tr>
<td>96.0</td>
<td>0.0040</td>
<td>0.0020</td>
<td>0.0081</td>
</tr>
<tr>
<td>104.0</td>
<td>0.0041</td>
<td>0.0020</td>
<td>0.0085</td>
</tr>
<tr>
<td>112.0</td>
<td>0.0043</td>
<td>0.0021</td>
<td>0.0088</td>
</tr>
<tr>
<td>120.0</td>
<td>0.0045</td>
<td>0.0022</td>
<td>0.0091</td>
</tr>
<tr>
<td>128.0</td>
<td>0.0046</td>
<td>0.0023</td>
<td>0.0094</td>
</tr>
<tr>
<td>136.0</td>
<td>0.0048</td>
<td>0.0023</td>
<td>0.0097</td>
</tr>
<tr>
<td>144.0</td>
<td>0.0049</td>
<td>0.0024</td>
<td>0.0100</td>
</tr>
<tr>
<td>152.0</td>
<td>0.0050</td>
<td>0.0025</td>
<td>0.0103</td>
</tr>
<tr>
<td>160.0</td>
<td>0.0052</td>
<td>0.0025</td>
<td>0.0105</td>
</tr>
</tbody>
</table>

This report displays the maximum likelihood estimates of the hazard rate, \(h(t) \), based on the selected probability distribution and the definition of the hazard rate

\[
h(t) = \frac{f(t)}{R(t)}
\]

Asymptotic confidence limits are computed using the formula from Nelson (1991) page 294.

\[
\hat{h}(t) \exp \left[\pm \frac{z_{1-\alpha/2}}{\hat{h}(t)} \left[\hat{h}(t) \right] \right]
\]

where

\[
s^2\left[\hat{h}(t) \right] = \left(\frac{\partial \hat{h}}{\partial P_1} \right)^2 v_{c_{1,1}} + \left(\frac{\partial \hat{h}}{\partial P_2} \right)^2 v_{c_{2,2}} + 2 \left(\frac{\partial \hat{h}}{\partial P_1} \right) \left(\frac{\partial \hat{h}}{\partial P_2} \right) v_{c_{1,2}}
\]

The partial derivatives are evaluated using numerical differentiation.

Note that we have found that the above approximation behaves poorly for some distributions. However, this is the only formula that we have been able to find, so this is what we provide. If you find that the confidence limits have a strange appearance (especially, in that the width goes to zero), please ignore them. They should appear as nice expanding lines about the estimated hazard rate.
This report displays the estimated values of the cumulative failure distribution, $F(t)$, at the time values that were specified in the Times option of the Reports Tab. These failure values are the estimated probability that failure occurs by the given time point. For example, the maximum likelihood estimate that a unit will fail within 88 hours is 0.1989. The 95% confidence estimate of this probability is 0.1064 to 0.3543.

The asymptotic confidence limits are computed using the following formula:

$$
\hat{F}_L(t) = \hat{F}\left(\hat{u} - z_{1-\alpha/2} \sqrt{\hat{V}(\hat{u})}\right)
$$

$$
\hat{F}_U(t) = \hat{F}\left(\hat{u} + z_{1-\alpha/2} \sqrt{\hat{V}(\hat{u})}\right)
$$

where

$$
\hat{u} = \frac{t - \hat{\mu}}{\hat{\sigma}}
$$

$$
\hat{V}(\hat{u}) = \frac{V(\hat{\mu}) + \hat{u}^2 V(\hat{\sigma}) + 2\hat{u} \text{Cov}(\hat{\mu}, \hat{\sigma})}{\hat{\sigma}^2}
$$

Note that limits for the Weibull, lognormal, and log-logistic are found using the corresponding extreme value, normal, and logistic probability functions using the substitution $y = \ln(t)$.

<table>
<thead>
<tr>
<th>Time</th>
<th>Failure Estimate</th>
<th>Prob Plot Failure</th>
<th>Max Like Failure Estimate</th>
<th>95% Lower Conf. Limit Failure</th>
<th>95% Upper Conf. Limit Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>0.0110</td>
<td>0.0059</td>
<td>0.0005</td>
<td>0.0622</td>
<td>0.6222</td>
</tr>
<tr>
<td>16.0</td>
<td>0.0262</td>
<td>0.0167</td>
<td>0.0027</td>
<td>0.1011</td>
<td>0.4011</td>
</tr>
<tr>
<td>24.0</td>
<td>0.0434</td>
<td>0.0306</td>
<td>0.0067</td>
<td>0.1345</td>
<td>0.4485</td>
</tr>
<tr>
<td>32.0</td>
<td>0.0619</td>
<td>0.0469</td>
<td>0.0127</td>
<td>0.1649</td>
<td>0.4749</td>
</tr>
<tr>
<td>40.0</td>
<td>0.0814</td>
<td>0.0651</td>
<td>0.0209</td>
<td>0.1935</td>
<td>0.4975</td>
</tr>
<tr>
<td>48.0</td>
<td>0.1014</td>
<td>0.0849</td>
<td>0.0310</td>
<td>0.2209</td>
<td>0.5215</td>
</tr>
<tr>
<td>56.0</td>
<td>0.1219</td>
<td>0.1060</td>
<td>0.0431</td>
<td>0.2477</td>
<td>0.5435</td>
</tr>
<tr>
<td>64.0</td>
<td>0.1427</td>
<td>0.1281</td>
<td>0.0569</td>
<td>0.2741</td>
<td>0.5655</td>
</tr>
<tr>
<td>72.0</td>
<td>0.1637</td>
<td>0.1510</td>
<td>0.0723</td>
<td>0.3005</td>
<td>0.5875</td>
</tr>
<tr>
<td>80.0</td>
<td>0.1849</td>
<td>0.1747</td>
<td>0.0888</td>
<td>0.3272</td>
<td>0.6095</td>
</tr>
<tr>
<td>88.0</td>
<td>0.2060</td>
<td>0.1989</td>
<td>0.1064</td>
<td>0.3543</td>
<td>0.6315</td>
</tr>
<tr>
<td>96.0</td>
<td>0.2271</td>
<td>0.2235</td>
<td>0.1245</td>
<td>0.3819</td>
<td>0.6535</td>
</tr>
<tr>
<td>104.0</td>
<td>0.2480</td>
<td>0.2483</td>
<td>0.1431</td>
<td>0.4102</td>
<td>0.6755</td>
</tr>
<tr>
<td>112.0</td>
<td>0.2689</td>
<td>0.2734</td>
<td>0.1617</td>
<td>0.4391</td>
<td>0.6975</td>
</tr>
<tr>
<td>120.0</td>
<td>0.2895</td>
<td>0.2984</td>
<td>0.1801</td>
<td>0.4688</td>
<td>0.7195</td>
</tr>
<tr>
<td>128.0</td>
<td>0.3099</td>
<td>0.3234</td>
<td>0.1982</td>
<td>0.4991</td>
<td>0.7415</td>
</tr>
<tr>
<td>136.0</td>
<td>0.3301</td>
<td>0.3483</td>
<td>0.2158</td>
<td>0.5298</td>
<td>0.7635</td>
</tr>
<tr>
<td>144.0</td>
<td>0.3500</td>
<td>0.3730</td>
<td>0.2328</td>
<td>0.5607</td>
<td>0.7855</td>
</tr>
<tr>
<td>152.0</td>
<td>0.3695</td>
<td>0.3975</td>
<td>0.2491</td>
<td>0.5917</td>
<td>0.8075</td>
</tr>
<tr>
<td>160.0</td>
<td>0.3888</td>
<td>0.4216</td>
<td>0.2648</td>
<td>0.6225</td>
<td>0.8295</td>
</tr>
</tbody>
</table>
This report displays the estimated reliability (survival) at the time values that were specified in the Times option of the Reports Tab. Reliability may be thought of as the probability that failure occurs after the given failure time. Thus, (using the ML estimates) the probability is 0.9531 that failure will not occur until after 32 hours. The 95% confidence for this estimated probability is 0.8351 to 0.9873.

Two reliability estimates are provided. The first uses the parameters estimated from the probability plot and the second uses the maximum likelihood estimates. Confidence limits are calculated for the maximum likelihood estimates. (They have not been derived for the probability plot estimates for all data situations). The formulas used are as follows.

\[
\hat{R}_L(t) = \hat{R}\left(\hat{u} - \frac{z_{1-\alpha/2}}{\hat{V}(\hat{u})}\right)
\]
\[
\hat{R}_U(t) = \hat{R}\left(\hat{u} + \frac{z_{1-\alpha/2}}{\hat{V}(\hat{u})}\right)
\]

where

\[
\hat{u} = \frac{t - \hat{M}}{\hat{S}}
\]
\[
\hat{V}(\hat{u}) = \frac{V(\hat{M}) + \hat{u}^2V(\hat{S}) + 2\hat{u}\text{Cov}(\hat{M}, \hat{S})}{\hat{S}^2}
\]

Note that limits for the Weibull, lognormal, and log-logistic are found using the corresponding extreme value, normal, and logistic probability functions using the substitution \(y=ln(t)\).
This report displays failure time percentiles and, for the maximum likelihood estimates, confidence intervals for those percentiles. For example, the estimated median failure time is 187 hours. The 95% confidence limits for the median time are 124.7 to 280.5. Note that these limits are very wide for two reasons. First, the sample size is small. Second, the shape parameter is less than 2.0.

The estimated 100th percentile and associated confidence interval is computed using the following steps.

1. Compute $w_p = F^{-1}(p)$

2. Compute $y_p = \hat{M} + w_p \hat{S}$. Note that in the case of the Weibull and exponential distributions, we let $\hat{M} = \ln(\hat{C})$ and $\hat{S} = 1 / \hat{B}$.

3. Compute $V(y_p) = VC_{1,1} + y_p^2 VC_{2,2} + 2y_p VC_{1,2}$.

4. For the normal, extreme value, and logistic distributions, the confidence interval for the percentile is given by

$$T_{\text{Lower}, p} = y_p - z_{1-\alpha/2} \sqrt{V(y_p)} + D$$

$$T_{\text{Upper}, p} = y_p + z_{1-\alpha/2} \sqrt{V(y_p)} + D$$

For the lognormal, exponential, Weibull, and log-logistic distributions, the confidence interval for the percentile is given by

$$T_{\text{Lower}, p} = \exp\left(y_p - z_{1-\alpha/2} \sqrt{V(y_p)}\right) + D$$

$$T_{\text{Upper}, p} = \exp\left(y_p + z_{1-\alpha/2} \sqrt{V(y_p)}\right) + D$$

For the lognormal base 10 distribution, the confidence interval for the percentile is given by

$$T_{\text{Lower}, p} = 10^{y_p - z_{1-\alpha/2} \sqrt{V(y_p)}} + D$$

$$T_{\text{Upper}, p} = 10^{y_p + z_{1-\alpha/2} \sqrt{V(y_p)}} + D$$
This report gives percentiles of the estimating life remaining after a certain time period. For example, the estimated median remaining life of items reaching 80.0 hours is 139.9 hours.

The percentile and associated confidence interval of residual (remaining) life is computed using the following steps.

1. Compute \(z_p = \frac{y_p - \hat{M}}{S} \). Note that in the case of the Weibull and exponential distributions, we let \(\hat{M} = \ln(\hat{C}) \) and \(\hat{S} = 1/\hat{B} \). Also note that for the normal, extreme value, and logistic distributions, \(y_p = t \). For the lognormal, Weibull, and log-logistic distributions, \(y_p = e^t \). And for the lognormal base 10 distribution, \(y_p = 10^t \).

2. Compute \(p_0 = F(z_p) \).

3. Compute \(p_1 = p_0(1 + P) \), where \(P \) is the percentile of residual life to be estimated.

4. Compute \(w_p = \hat{M} + F^{-1}(p_1)\hat{S} \). Note that in the case of the Weibull and exponential distributions, we let \(\hat{M} = \ln(\hat{C}) \) and \(\hat{S} = 1/\hat{B} \).

For the normal, extreme value, and logistic distributions, the estimate is given by \(T_p = w_p \).

For the lognormal, exponential, Weibull, and log-logistic distributions, the estimate is given by \(T_p = e^{w_p} \).

For the lognormal base 10 distribution, the estimate is given by
Survival Plot

This plot shows the product-limit survivorship function (the step function) as well as the parametric survival plot and associated confidence intervals. If there are several groups, a separate line is drawn for each group.

Hazard Function Plot

This plot shows the parametric and nonparametric cumulative hazard functions for the data analyzed. Confidence limits for the parametric cumulative hazard function are also given.

If you have several groups, then a separate line is drawn for each group. The shape of the hazard function is often used to determine an appropriate survival distribution.

\[T_p = 10^{w_p} \]
Hazard Rate Plot

This plot shows the parametric and nonparametric hazard rate plots with confidence limits for the parametric hazard rate. This plot is especially useful for studying the shape of the nonparametric hazard rate and comparing that with the parametric hazard rate. When selecting a probability distribution to represent a set of data, it is important to determine if the parametric hazard rate plot has a general shape that is consistent both with the nonparametric hazard rate and with your prior knowledge of the hazard distribution. This plot allows you to make this comparison.

Note that the asymptotic confidence intervals are not well behaved for some distributions. If the confidence intervals seem to have zero width at some point along the plot, you should realize that they fall into this category and ignore them.

Probability Plot

This is the Weibull probability plot of these data. The expected quantile of the theoretical distribution is plotted on the horizontal axis. The natural logarithm of the time value is plotted on the vertical axis. Note that censored points are not shown on this plot. Also note that for tied data, only one point is shown for each set of ties.
This plot lets you investigate the goodness of fit of the selected probability distribution to your data. If the points seem to fall along a straight line, the selected probability model may be useful. If the plot shows a downward curve, the value of the threshold parameter, \(D \), may need to be increased. If the plot shows an upward curve, the value of the threshold parameter may need to be decreased. Or you may need to select a different distribution.

You have to decide whether the probability distribution is a good fit to your data by looking at this plot and by comparing the value of the log likelihood to that of other distributions.

Multiple-Censored and Grouped Data

The case of grouped and multiple-censored data cause special problems when creating a probability plot. Remember that the horizontal axis represents the expected quantile from the selected distribution for each (sorted) failure time. In the regular case, we use the rank of the observation in the overall dataset. However, in the case of grouped or multiple-censored data, we use a modified rank. This modified rank, \(O_j \), is computed as follows

\[
O_j = O_p + I_j
\]

where

\[
I_j = \frac{(n+1) - O_p}{1 + c}
\]

where \(I_j \) is the increment for the \(j \)th failure; \(n \) is the total number of data points, both censored and uncensored; \(O_p \) is the order of the previous failure; and \(c \) is the number of data points remaining in the data set, including the current data. Implementation details of this procedure may be found in Dodson (1994).

Left censored and interval censored data are treated as failures for making the probability plots.

Example 2 – Distribution Selection

This section presents an example of how to let the program help you pick an appropriate parametric distribution. The data used were shown above and are found in the Weibull dataset.

You may follow along here by making the appropriate entries or load the completed template Example 2 by clicking on Open Example Template from the File menu of the Distribution (Weibull) Fitting window.

1. Open the Weibull dataset.
 - From the File menu of the NCSS Data window, select Open Example Data.
 - Click on the file Weibull.NCSS.
 - Click Open.

2. Open the Distribution (Weibull) Fitting window.
 - On the menus, select Analysis, then Survival / Reliability, then Distribution (Weibull) Fitting. The Distribution (Weibull) Fitting procedure will be displayed.
 - On the menus, select File, then New Template. This will fill the procedure with the default template.

3. Specify the variables.
 - On the Distribution (Weibull) Fitting window, select the Variables tab.
 - Double-click in the Time Variable box. This will bring up the variable selection window.
 - Select Time from the list of variables and then click Ok.
 - Double-click in the Censor Variable box. This will bring up the variable selection window.
 - Select Censor from the list of variables and then click Ok.
 - Double-click in the Frequency Variable box. This will bring up the variable selection window.
 - Select Count from the list of variables and then click Ok.
4 **Set the Derivative constant.**
 - On the Distribution (Weibull) Fitting window, select the **Options tab**.
 - Set **Derivatives** box to **0.00006**.

5 **Set the Plots**
 - On the Distribution (Weibull) Fitting window, select the **Plots tab**.
 - Make sure the **Two Plots Per Line** box is checked.

6 **Run the procedure.**
 - From the Run menu, select **Run Procedure**. Alternatively, just click the Run button (the left-most button on the button bar at the top).

Data Summary Section

<table>
<thead>
<tr>
<th>Type of Observation</th>
<th>Rows</th>
<th>Count</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failed</td>
<td>12</td>
<td>12</td>
<td>12.5</td>
<td>152.7</td>
</tr>
<tr>
<td>Right Censored</td>
<td>1</td>
<td>18</td>
<td>152.7</td>
<td>152.7</td>
</tr>
<tr>
<td>Left Censored</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interval Censored</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
<td>30</td>
<td>12.5</td>
<td>152.7</td>
</tr>
</tbody>
</table>

This report displays a summary of the data that were analyzed. Scan this report to determine if there were any obvious data errors by double-checking the counts and the minimum and maximum.

Distribution Fit Summary Section

<table>
<thead>
<tr>
<th>Distribution Fit Summary Section</th>
<th>Likelihood</th>
<th>Shape</th>
<th>Scale</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weibull</td>
<td>-80.05649</td>
<td>1.511543</td>
<td>238.3481</td>
<td>0.0</td>
</tr>
<tr>
<td>Loglogistic</td>
<td>-80.11679</td>
<td>5.28008</td>
<td>0.5909371</td>
<td>0.0</td>
</tr>
<tr>
<td>Lognormal</td>
<td>-80.38821</td>
<td>5.349999</td>
<td>1.137753</td>
<td>0.0</td>
</tr>
<tr>
<td>Lognormal10</td>
<td>-80.38821</td>
<td>2.323475</td>
<td>0.4941201</td>
<td>0.0</td>
</tr>
<tr>
<td>Exponential</td>
<td>-81.04864</td>
<td>1</td>
<td>315.4667</td>
<td>0.0</td>
</tr>
<tr>
<td>Normal</td>
<td>-81.24539</td>
<td>171.1062</td>
<td>84.88175</td>
<td>0.0</td>
</tr>
<tr>
<td>Logistic</td>
<td>-81.74763</td>
<td>169.1118</td>
<td>49.77026</td>
<td>0.0</td>
</tr>
<tr>
<td>Extreme Value</td>
<td>-82.1103</td>
<td>189.3399</td>
<td>57.44398</td>
<td>0.0</td>
</tr>
</tbody>
</table>

This report displays the values of the log-likelihood for each distribution along with the estimated values of its parameters. Since our desire is to maximize the likelihood, under normal circumstances, we would pick the distribution at the top of the report since it has the largest likelihood value. In this example, we would select the Weibull distribution.
Probability Plots

By studying these probability plots, we can determine which distributions fit the data the best. In this example, since there are only a few observations, it is difficult to select one distribution over another. We can see that our candidate from the last section, the Weibull distribution, certainly cannot be removed on the basis of its probability plot. Without further information, our decision would be to select the Weibull distribution to fit these data.
Example 3 – Readout Data

This section presents an example of how to analyze readout data. The data used are found in the Readout105 dataset. The table below shows the results of a study to test the failure rate of a particular machine. This study began with 40 test machines. After each time period (24, 72, 168, etc.) the number of machines that had failed since the period began was recorded. This number is entered into the Count variable. Hence, two machines failed during the first 24 hours, one machine failed between 24 and 72 hours, and so on.

After 1500 hours, the study was terminated. Sixteen machines still had not failed. The data are entered in the spreadsheet as shown below.

We have used obvious indicators for censoring. Since the first period begins with a zero time, this entry represents left censored data. We indicate left censoring with an ‘L.’ The next eight rows represent interval censored data. Both beginning and ending times are needed for these entries. We indicate interval censoring with an ‘I.’ The last row corresponds to the sixteen machines that did not fail. These are entered as right censored data, which is indicated with an ‘R.’

<table>
<thead>
<tr>
<th>Time1</th>
<th>Time2</th>
<th>Censor</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>0</td>
<td>L</td>
<td>2</td>
</tr>
<tr>
<td>72</td>
<td>24</td>
<td>I</td>
<td>1</td>
</tr>
<tr>
<td>168</td>
<td>72</td>
<td>I</td>
<td>3</td>
</tr>
<tr>
<td>300</td>
<td>168</td>
<td>I</td>
<td>2</td>
</tr>
<tr>
<td>500</td>
<td>300</td>
<td>I</td>
<td>2</td>
</tr>
<tr>
<td>750</td>
<td>500</td>
<td>I</td>
<td>4</td>
</tr>
<tr>
<td>1000</td>
<td>750</td>
<td>I</td>
<td>5</td>
</tr>
<tr>
<td>1250</td>
<td>1000</td>
<td>I</td>
<td>1</td>
</tr>
<tr>
<td>1500</td>
<td>1250</td>
<td>I</td>
<td>4</td>
</tr>
<tr>
<td>1500</td>
<td>R</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

You may follow along here by making the appropriate entries or load the completed template Example 3 by clicking on Open Example Template from the File menu of the Distribution (Weibull) Fitting window.

1. Open the Readout105 dataset.
 - From the File menu of the NCSS Data window, select Open Example Data.
 - Click on the file Readout105.NCSS.
 - Click Open.

2. Open the Distribution (Weibull) Fitting window.
 - On the menus, select Analysis, then Survival / Reliability, then Distribution (Weibull) Fitting. The Distribution (Weibull) Fitting procedure will be displayed.
 - On the menus, select File, then New Template. This will fill the procedure with the default template.

3. Specify the variables.
 - On the Distribution (Weibull) Fitting window, select the Variables tab.
 - Double-click in the Time Variable box. This will bring up the variable selection window.
 - Select Time1 from the list of variables and then click Ok.
 - Double-click in the Start Time Variable box. This will bring up the variable selection window.
 - Select Time2 from the list of variables and then click Ok.
 - Double-click in the Frequency Variable box. This will bring up the variable selection window.
 - Select Count from the list of variables and then click Ok.
 - Double-click in the Censor Variable box. This will bring up the variable selection window.
 - Select Censor from the list of variables and then click Ok.
Distribution (Weibull) Fitting

- Set Failed to F.
- Set Right to R.
- Set Left to L.
- Set Interval to I.
- Select Find Best in the Distribution box.

4 Set the Derivative constant.
 - On the Distribution Fitting window, select the Options tab.
 - Set the Derivatives box to 0.00006.

5 Set the Plots
 - On the Distribution Fitting window, select the Plots tab.
 - Make sure the Two Plots Per Line box is checked.

6 Run the procedure.
 - From the Run menu, select Run Procedure. Alternatively, just click the Run button (the left-most button on the button bar at the top).

Data Summary Section

<table>
<thead>
<tr>
<th>Type of Observation</th>
<th>Rows</th>
<th>Count</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failed</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right Censored</td>
<td>1</td>
<td>16</td>
<td>1500</td>
<td>1500</td>
</tr>
<tr>
<td>Left Censored</td>
<td>1</td>
<td>2</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>Interval Censored</td>
<td>8</td>
<td>22</td>
<td>24</td>
<td>1500</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td>40</td>
<td>24</td>
<td>1500</td>
</tr>
</tbody>
</table>

This report displays a summary of the data that were analyzed. We note that the number of rows and the total count appear to be correct.

Distribution Fit Summary Section

<table>
<thead>
<tr>
<th>Distribution Fit Summary Section</th>
<th>Likelihood</th>
<th>Shape</th>
<th>Scale</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weibull</td>
<td>-79.42889</td>
<td>0.8222772</td>
<td>1746.067</td>
<td>0.0</td>
</tr>
<tr>
<td>Exponential</td>
<td>-79.96207</td>
<td>1</td>
<td>1631.161</td>
<td>0.0</td>
</tr>
<tr>
<td>Loglogistic</td>
<td>-80.27086</td>
<td>7.044066</td>
<td>1.030881</td>
<td>0.0</td>
</tr>
<tr>
<td>Lognormal</td>
<td>-81.19075</td>
<td>7.015936</td>
<td>1.886779</td>
<td>0.0</td>
</tr>
<tr>
<td>Lognormal10</td>
<td>-81.19075</td>
<td>3.046982</td>
<td>0.8194178</td>
<td>0.0</td>
</tr>
<tr>
<td>Normal</td>
<td>-81.44245</td>
<td>1213.697</td>
<td>913.7082</td>
<td>0.0</td>
</tr>
<tr>
<td>Logistic</td>
<td>-82.05516</td>
<td>1199.686</td>
<td>563.52</td>
<td>0.0</td>
</tr>
<tr>
<td>Extreme Value</td>
<td>-83.09204</td>
<td>1525.271</td>
<td>726.1455</td>
<td>0.0</td>
</tr>
</tbody>
</table>

It appears that the Weibull distribution is a reasonable choice for the parametric distribution, although the shape parameter is less than one. This may point to the need for a nonzero threshold value.

To finish this example, you would view the probability plots. Finally, you would try fitting the Weibull distribution to these data. We will leave that to you to do. Simply change the Distribution box to Weibull and rerun the procedure.
Example 4 – Engine Fan Data

Nelson (1982) gives data on the failure times of seventy diesel engine fans. Twelve of the fans failed during the duration of the test. Fifty-eight of the fans completed the test without failure, so only their running times were recorded. These data are contained in the FanFailure dataset. You can observe the data by opening this dataset. Note that ‘F’ designates a failure and ‘C’ designates a censored (non-failed) fan.

Two questions were to be answered from these data. First of all, the warranty period for the fan is 8000 hours. Management wanted to know what percentage would fail on or before the warranty period ended. Second, management wanted to know what happens to the failure rate as the fans age.

The following steps will set up the procedure to analyze these data and answer the two questions given above. You may follow along here by making the appropriate entries or load the completed template Example 4 by clicking on Open Example Template from the File menu of the Distribution (Weibull) Fitting window.

1 Open the FanFailure dataset.
 - From the File menu of the NCSS Data window, select Open Example Data.
 - Click on the file FanFailure.NCSS.
 - Click Open.

2 Open the Distribution (Weibull) Fitting window.
 - On the menus, select Analysis, then Survival / Reliability, then Distribution (Weibull) Fitting. The Distribution (Weibull) Fitting procedure will be displayed.
 - On the menus, select File, then New Template. This will fill the procedure with the default template.

3 Specify the variables.
 - On the Distribution (Weibull) Fitting window, select the Variables tab.
 - Double-click in the Time Variable box. This will bring up the variable selection window.
 - Select Hours from the list of variables and then click Ok.
 - Double-click in the Frequency Variable box. This will bring up the variable selection window.
 - Select Count from the list of variables and then click Ok.
 - Double-click in the Censor Variable box. This will bring up the variable selection window.
 - Select Censor from the list of variables and then click Ok.
 - Set Failed to F.
 - Set Right to C.
 - Select Weibull in the Distribution box.

4 Set the Reports
 - On the Distribution (Weibull) Fitting window, select the Reports tab.
 - Set the Times box to 1000:15000(1000).

5 Run the procedure.
 - From the Run menu, select Run Procedure. Alternatively, just click the green Run button.

We will show only those portions of the printout that are necessary to answer the two questions that were posed at the beginning of this section.
Parameter Estimation Section

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Probability Plot Estimate</th>
<th>Maximum Likelihood Estimate</th>
<th>MLE Standard Error</th>
<th>MLE 95% Lower Conf. Limit</th>
<th>MLE 95% Upper Conf. Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shape</td>
<td>1.202295</td>
<td>1.058446</td>
<td>0.268267</td>
<td>0.6440636</td>
<td>1.739436</td>
</tr>
<tr>
<td>Scale</td>
<td>17283.81</td>
<td>26296.85</td>
<td>12252.58</td>
<td>10551.17</td>
<td>65540.08</td>
</tr>
<tr>
<td>Threshold</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log Likelihood</td>
<td>-135.1527</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>16250.13</td>
<td>25715.61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>12742.28</td>
<td>18600.24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td>3925.094</td>
<td>1703.919</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sigma</td>
<td>13574.96</td>
<td>24306.58</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This report shows the estimated parameters. We are particularly interested to see that the shape parameter is almost exactly one. The confidence limits for the estimated shape parameter include one between them. Remember that when the shape parameter is one, the Weibull distribution reduces to the exponential distribution, a distribution which ‘has no memory.’ From this, we get an indication that the failure pattern of the fans does not change over time. That is, the failure rate does not change as the fans get older.

Parametric Failure Distribution Section

<table>
<thead>
<tr>
<th>Failure Time</th>
<th>Prob Plot Estimate of Failure</th>
<th>Max Like Estimate of Failure</th>
<th>95% Lower Conf. Limit of Failure</th>
<th>95% Upper Conf. Limit of Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000.0</td>
<td>0.0320</td>
<td>0.0309</td>
<td>0.0105</td>
<td>0.0895</td>
</tr>
<tr>
<td>2000.0</td>
<td>0.0721</td>
<td>0.0633</td>
<td>0.0289</td>
<td>0.1360</td>
</tr>
<tr>
<td>3000.0</td>
<td>0.1147</td>
<td>0.0956</td>
<td>0.0501</td>
<td>0.1782</td>
</tr>
<tr>
<td>4000.0</td>
<td>0.1581</td>
<td>0.1274</td>
<td>0.0719</td>
<td>0.2203</td>
</tr>
<tr>
<td>5000.0</td>
<td>0.2016</td>
<td>0.1585</td>
<td>0.0927</td>
<td>0.2636</td>
</tr>
<tr>
<td>6000.0</td>
<td>0.2444</td>
<td>0.1888</td>
<td>0.1121</td>
<td>0.3083</td>
</tr>
<tr>
<td>7000.0</td>
<td>0.2863</td>
<td>0.2184</td>
<td>0.1297</td>
<td>0.3539</td>
</tr>
<tr>
<td>8000.0</td>
<td>0.3270</td>
<td>0.2471</td>
<td>0.1459</td>
<td>0.3999</td>
</tr>
<tr>
<td>9000.0</td>
<td>0.3664</td>
<td>0.2749</td>
<td>0.1607</td>
<td>0.4456</td>
</tr>
<tr>
<td>10000.0</td>
<td>0.4043</td>
<td>0.3019</td>
<td>0.1743</td>
<td>0.4905</td>
</tr>
<tr>
<td>11000.0</td>
<td>0.4406</td>
<td>0.3280</td>
<td>0.1870</td>
<td>0.5340</td>
</tr>
<tr>
<td>12000.0</td>
<td>0.4753</td>
<td>0.3533</td>
<td>0.1987</td>
<td>0.5758</td>
</tr>
<tr>
<td>13000.0</td>
<td>0.5084</td>
<td>0.3778</td>
<td>0.2098</td>
<td>0.6156</td>
</tr>
<tr>
<td>14000.0</td>
<td>0.5399</td>
<td>0.4014</td>
<td>0.2202</td>
<td>0.6531</td>
</tr>
<tr>
<td>15000.0</td>
<td>0.5697</td>
<td>0.4242</td>
<td>0.2300</td>
<td>0.6883</td>
</tr>
</tbody>
</table>

This report presents the estimated failure proportions at various time periods. We note that at 8000 hours, the maximum likelihood estimate for the proportion failing is 0.247. The 95% confidence limits are 0.146 to 0.400. That is, almost 25% of the fans can be expected to fail by 8000 hours—a very high failure rate. Management will have to change the fans to decrease the proportion failing!
This plot shows both the parametric and nonparametric estimates of the hazard rates. First, we analyze the nonparametric estimate. Notice that the line wanders up and then down, but it does not extend outside the confidence limits of the parametric hazard rate. The sharp rise at the end of the plot is due to a lack of data in this region and should be ignored. We see that the parametric estimate of the hazard rate, the middle horizontal line, is a reasonable approximation for the nonparametric line. The above considerations again lead us to conclude that the failure rates do not change with age.

This ends this example. Notice how quickly we have been able to answer the two questions posed by management. The only task that we did not complete was to make sure that the Weibull distribution was appropriate for these data. A quick look at the probability plot will show you that it is.